Công trình đoạt giải 3 triệu USD VinFuture 2024: Đỉnh cao Trí tuệ nhân tạo và mạng nơ-ron

Công trình đoạt giải 3 triệu USD VinFuture 2024: Đỉnh cao Trí tuệ nhân tạo và mạng nơ-ron
Giải thưởng Chính VinFuture 2024 đã được trao cho 5 nhà khoa học: Giáo sư Yoshua Bengio và Giáo sư Geoffrey E. Hinton (Canada), Ông Jen-Hsun Huang, Giáo sư Yann LeCun và Giáo sư Fei-Fei Li (Mỹ) vì những đóng góp đột phá để thúc đẩy sự tiến bộ của học sâu.

Những tiến bộ trong học sâu đã mở ra một kỷ nguyên đột phá cho những đổi mới sáng tạo về công nghệ, nhờ đó máy móc có thể “học” từ lượng dữ liệu khổng lồ và đạt được độ chính xác đáng kinh ngạc trong các tác vụ như nhận diện hình ảnh, xử lý ngôn ngữ tự nhiên và đưa ra quyết định.

Thành tựu này có được là nhờ những đóng góp mang tính cách mạng cho mạng nơ-ron và các thuật toán học sâu của Giáo sư Geoff E. Hinton, Giáo sư Yann LeCun và Giáo sư Yoshua Bengio. Bên cạnh đó, ông Jen-Hsun Huang đã tiên phong trong việc phát triển các nền tảng điện toán tăng tốc, thúc đẩy sự bùng nổ của kỷ nguyên AI (Trí tuệ nhân tạo) hiện đại. Việc Giáo sư Fei-Fei Li tạo ra tập dữ liệu ImageNet cũng đã thúc đẩy sự tiến bộ trong hệ thống nhận diện hình ảnh, giúp huấn luyện các mô hình học sâu ở quy mô lớn.

Công trình đoạt giải 3 triệu USD VinFuture 2024: Đỉnh cao Trí tuệ nhân tạo và mạng nơ-ron

Giải thưởng Chính VinFuture 2024 đã được trao cho 5 nhà khoa học: Giáo sư Yoshua Bengio và Giáo sư Geoffrey E. Hinton (Canada), Ông Jen-Hsun Huang, Giáo sư Yann LeCun và Giáo sư Fei-Fei Li (Mỹ).

Từ năm 2012, học sâu đã trở thành công cụ chủ đạo thúc đẩy các bước tiến lớn trong nhiều lĩnh vực như chăm sóc sức khỏe, tự động hóa, dịch vụ tài chính, từ đó định đổi mới, phát triển trong tương lai.

Công trình tiên phong của Giáo sư Yoshua Bengio

Công trình tiên phong của Giáo sư Yoshua Bengio về mạng nơ-ron bao gồm những tiến bộ quan trọng trong học biểu diễn (representation learning) và các mô hình tạo sinh (generative models). Việc mô hình hóa từ ngữ trong không gian đa chiều được ông đề cập trong bài báo nghiên cứu công bố vào năm 2000 với tiêu đề "A Neural Probabilistic Language Model” đóng vai then chốt trong các tác vụ xử lý ngôn ngữ tự nhiên (NLP) ví dụ như dịch ngôn ngữ và trả lời câu hỏi. 

Ông cũng có đóng góp nền tảng đối với việc phát triển Mạng đối nghịch tạo sinh (GANs) dẫn tới sự cách mạng hóa trong lĩnh vực thị giác và học sâu. Nghiên cứu của ông tiếp tục thúc đẩy những tiến bộ cả về lý thuyết và ứng dụng thực tiễn trong nhiều ngành công nghiệp.

Những đóng góp của Giáo sư Bengio đã trở thành một phần thiết yếu trong các hệ thống học sâu hiện đại, đặc biệt là trong xử lý ngôn ngữ tự nhiên (NLP). Công trình của ông đã tạo điều kiện để phát triển các công cụ như trợ lý ảo và công cụ dịch ngôn ngữ, cho phép hàng triệu người trên thế giới được tiếp cận với các công nghệ này. Các nghiên cứu của ông tiếp tục định hình các lĩnh vực liên quan đến học sâu từ việc chế tạo robot đến phát triển y học cá nhân hóa.

Những đổi mới của Bengio đã cho phép các hệ thống “học” và tạo dữ liệu với độ chính xác đáng kinh ngạc. Những đổi mới này đặc biệt quan trọng trong việc tạo ra các giải pháp dựa trên trí tuệ nhân tạo để giải quyết các thách thức toàn cầu, chẳng hạn như cải thiện dịch vụ chăm sóc sức khỏe và thúc đẩy phát triển môi trường bền vững.

Công trình kiến trúc mạng nơ-ron của Giáo sư Geoffrey Hinton

Giáo sư Geoffrey Hinton được ghi nhận bởi vai trò lãnh đạo và công trình nghiên cứu nền tảng của ông về kiến trúc mạng nơ-ron. Bài báo xuất bản năm 1986 của ông cùng với David Rumelhart và Ronald Williams đã cho thấy các biểu diễn phân tán trong mạng nơ-ron được huấn luyện bởi thuật toán lan truyền ngược. 

Phương pháp này đã trở thành công cụ tiêu chuẩn trong lĩnh vực trí tuệ nhân tạo và tạo ra các tiến bộ trong nhận diện hình ảnh và giọng nói. Lĩnh vực thị giác máy tính và nhận diện giọng nói đã có những bước tiến dài nhờ các nghiên cứu của ông về Máy Boltzmann, các cải tiến trong mạng nơ-ron tích chập (CNNs) và đặc biệt là với thành công của ông cùng cộng sự tại cuộc thi ImageNet.

Những đổi mới của Giáo sư Hinton đã cách mạng hóa lĩnh vực học sâu và phát triển các mạng nơ-ron điều khiển các công nghệ như nhận diện giọng nói và thị giác máy tính. Những hệ thống này đã được áp dụng rộng rãi và đem lại lợi ích cho hàng tỷ người trên toàn thế giới.

Bằng cách tinh chỉnh kiến trúc của các mạng nơ-ron sâu và sử dụng các tập dữ liệu lớn để huấn luyện chúng, Giáo sư Hinton đã mở ra những hướng đi mới cho nghiên cứu và ứng dụng trí tuệ nhân tạo, từ đó tạo tiền đề cho những tiến bộ trong phát triển các mô hình trí tuệ nhân tạo và các hệ thống tự động.

Công trình của Chủ tịch NVIDIA Jensen Huang

Ông Jensen Huang được ghi nhận vì vai trò lãnh đạo mang tầm nhìn chiến lược trong việc chuyển đổi các bộ xử lý đồ họa (GPUs) thành công cụ mạnh mẽ phục vụ cho học sâu và điện toán tăng tốc. Với vai trò đồng sáng lập NVIDIA, ông Huang đã lãnh đạo việc phát triển nền tảng CUDA (Compute Unified Device Architecture - Kiến trúc thiết bị tính toán hợp nhất) giúp lập trình GPU để xử lý hiệu quả các yêu cầu tính toán khổng lồ của học sâu. 

Công trình đoạt giải 3 triệu USD VinFuture 2024: Đỉnh cao Trí tuệ nhân tạo và mạng nơ-ron- Ảnh 2.
Chủ tịch NVIDIA Jensen Huang.

Đột phá này đã cho phép huấn luyện nhanh chóng các mạng nơ-ron và khiến GPU trở thành công cụ thiết yếu trong việc nghiên cứu và phát triển trí tuệ nhân tạo trên toàn thế giới. Sự lãnh đạo của ông đã thúc đẩy hàng loạt đột phá trong các lĩnh vực như nhận diện giọng nói tự động, xử lý ngôn ngữ tự nhiên, thị giác máy tính, robot, và phát triển hệ thống tự động.

Những đóng góp của ông Huang đã thúc đẩy GPU trở thành yếu tố thiết yếu trong nghiên cứu trí tuệ nhân tạo hiện đại, đẩy nhanh sự đổi mới trong các lĩnh vực như nhận diện giọng nói, xe tự lái, xử lý hình ảnh y tế và xử lý ngôn ngữ. Ngày nay, học sâu tăng tốc bằng GPU đang thúc đẩy nhiều tiến bộ như các mô hình trí tuệ nhân tạo phổ biến hiện nay hay các công cụ chẩn đoán và chăm sóc sức khỏe, mang lại lợi ích cho hàng triệu người trên thế giới.

Bằng cách dân chủ hóa khả năng tiếp cận với điện toán tăng tốc, ông Huang đã định hình lại bối cảnh nghiên cứu học sâu và các ứng dụng của nó trong nhiều ngành công nghiệp. Những đổi mới của ông cho phép các nhà nghiên cứu xử lý dữ liệu lớn với hiệu suất chưa từng có và mở rộng giới hạn của trí tuệ nhân tạo, thúc đẩy các giải pháp để đối phó với các thách thức toàn cầu.

Mạng nơ-ron tích chập cho thị giác máy tính của Giáo sư Yann LeCun

Giáo sư Yann LeCun được ghi nhận bởi công trình tiên phong của ông trong việc phát triển các mạng nơ-ron tích chập (CNNs), một mô hình quan trọng trong việc phát triển công nghệ nhận diện hình ảnh và học sâu. Công trình của ông về CNNs vào cuối những năm 1980 đã đặt nền móng cho quá trình học tự động các đặc trưng hình ảnh phân cấp, điều này rất quan trọng trong các tác vụ như phát hiện đối tượng và nhận diện khuôn mặt. Ông còn có nhưng đóng góp quan trọng trong phương pháp học không giám sát, các mô hình năng lượng và các kỹ thuật lan truyền ngược hiệu quả.

Những đổi mới của Giáo sư LeCun đã thúc đẩy sự đột phá trong các ngành công nghiệp sử dụng công nghệ xử lý hình ảnh, từ chẩn đoán y tế đến lái xe tự động. CNNs hiện đã trở thành tiêu chuẩn trong các ứng dụng trí tuệ nhân tạo mà hàng tỷ người sử dụng mỗi ngày, đóng vai trò trung tâm trong sự phát triển của các công nghệ như nhận diện khuôn mặt và xử lý hình ảnh y tế.

Công trình của Giáo sư LeCun đã thay đổi căn bản cách mà máy móc diễn giải dữ liệu hình ảnh, cho phép các hệ thống trở nên thông minh và đáp ứng tốt hơn. Những đóng góp của ông đã giúp các hệ thống trí tuệ nhân tạo làm việc hiệu quả hơn trong các nhiệm vụ như chăm sóc y tế cá nhân hóa, cải thiện an toàn bảo mật, nâng cao hiệu quả tự động hóa, từ đó mang lại lợi ích cho trên phạm vi toàn cầu.

Công trình thị giác máy tính

Giáo sư Fei-Fei Li được ghi nhận vì những đóng góp tiên phong của bà trong lĩnh vực thị giác máy tính và phát triển bộ dữ liệu ImageNet. Sự lãnh đạo của bà trong dự án ImageNet đã cách mạng hóa việc nhận diện hình ảnh bằng cách tạo ra một bộ dữ liệu lớn, có nhãn, cho phép máy móc nhận diện và phân loại đối tượng một cách chính xác hơn. ImageNet đã đặt nền tảng cho việc huấn luyện các mô hình học sâu và thúc đẩy phát triển các tác vụ như phát hiện đối tượng, nhận diện khuôn mặt, và phân loại hình ảnh. Công trình của Giáo sư Li là một ví dụ điển hình về tầm quan trọng của dữ liệu trong việc huấn luyện các hệ thống trí tuệ nhân tạo, ảnh hưởng đến cách tiếp cận thông qua dữ liệu được sử dụng trong nhiều lĩnh vực.

ImageNet là động lực thúc đẩy sự tiến bộ của thị giác máy tính và học sâu. Việc các nhà nghiên cứu áp dụng nó đã kích thích sự đổi mới trong các ngành công nghiệp phụ thuộc vào dữ liệu hình ảnh. Bộ dữ liệu này đóng vai trò quan trọng trong việc phát triển lĩnh vực thị giác máy tính, giúp lĩnh vực này tiếp cận và ứng dụng học sâu.

Những đóng góp của Giáo sư Li đã thay đổi cách các hệ thống học sâu xử lý và hiểu thông tin hình ảnh, tạo điều kiện cho những tiến bộ trong các lĩnh vực như lái xe tự động, chẩn đoán y tế và hệ thống thông minh. Bằng cách mở rộng giới hạn mà máy móc có thể quan sát và diễn giải, công trình của bà đã thúc đẩy sự đổi mới trong lĩnh vực thị giác máy tính và mang lại lợi ích cho toàn xã hội.

Bình luận

0 bình luận, đánh giá

TVQuản trị viênQuản trị viên

Xin chào quý khách. Quý khách hãy để lại bình luận, chúng tôi sẽ phản hồi sớm

Trả lời.
Thông tin người gửi
Nhấn vào đây để đánh giá
Thông tin người gửi
Cùng chuyên mục
Dụng cụ bơm rửa mũi cho bé: So sánh ưu nhược điểm từng loại

Dụng cụ bơm rửa mũi cho bé: So sánh ưu nhược điểm từng loại

01-02-2026 18:13

Dụng cụ bơm rửa mũi cho bé ngày càng được nhiều phụ huynh quan tâm nhờ khả năng hỗ trợ làm sạch dịch mũi, giảm nghẹt mũi và phòng ngừa viêm đường hô hấp. Tuy nhiên, mỗi loại dụng cụ bơm rửa mũi cho bé đều có những ưu nhược điểm riêng, cha mẹ cần hiểu rõ để lựa chọn sản phẩm phù hợp và an toàn cho con.

Bài xem nhiều

Đáng chú ý

Nổi bật trang chủ
Vì sao các HLV Hàn Quốc thành công tại Việt Nam
31 Tháng 01, 2026

Tờ Special Times của Hàn Quốc đã nêu bật những yếu tố then chốt đem tới thành công cho HLV Hàn Quốc tại Việt Nam, từ Park Hang-seo đến Kim Sang-sik.

Đọc thêm
Hưng Yên chọn Tiếng Anh là môn thi thứ 3 vào lớp 10

Hưng Yên chọn Tiếng Anh là môn thi thứ 3 vào lớp 10

31 Tháng 01, 2026

Sở GD&ĐT tỉnh Hưng Yên vừa ban hành thông báo số 299 về môn thi thứ 3 Kỳ thi vào lớp 10 THPT công lập...

Chính quyền Trump chặn 30 tỉ USD viện trợ nước ngoài cho các tổ chức nhân quyền

Chính quyền Trump chặn 30 tỉ USD viện trợ nước ngoài cho các tổ chức nhân quyền

31 Tháng 01, 2026

Hôm 29/1, Bộ Ngoại giao Mỹ đã chỉ đạo các phái bộ của Mỹ trên toàn thế giới rà soát toàn bộ các chương trình...

Chương Nhược Nam lột xác tại show Givenchy

Chương Nhược Nam lột xác tại show Givenchy

31 Tháng 01, 2026

Chương Nhược Nam gây sốt với diện mạo khác lạ tại show Givenchy Xuân Hè 2026. Nữ diễn viên chính thức rũ bỏ hình tượng...

Cơn sốt mổ lợn Tết gây náo loạn mạng xã hội xứ Trung

Cơn sốt mổ lợn Tết gây náo loạn mạng xã hội xứ Trung

30 Tháng 01, 2026

Một phụ nữ Trung Quốc bất ngờ nổi tiếng nhờ tổ chức mổ lợn Tết tại gia. Sự việc kéo theo nhiều hệ lụy xã...

Điều gì sẽ xảy ra nếu Mỹ tấn công Iran?

Điều gì sẽ xảy ra nếu Mỹ tấn công Iran?

30 Tháng 01, 2026

Việc Mỹ triển khai các vị trí tấn công tại những điểm trọng yếu xung quanh Iran đã làm dấy lên lo ngại khắp Trung...

Mùa phim Tết 2026: Phim gia đình 'chiếm' rạp, hài Tết thoái trào

Mùa phim Tết 2026: Phim gia đình 'chiếm' rạp, hài Tết thoái trào

30 Tháng 01, 2026

Mùa phim Tết Bính Ngọ 2026 ghi nhận sự chuyển dịch rõ nét khi phim gia đình, giàu cảm xúc chiếm lĩnh rạp chiếu, trong...

Giá xăng dầu hôm nay 30/1: Giá dầu thô “tăng nóng” khi Mỹ đe doạ tấn công Iran

Giá xăng dầu hôm nay 30/1: Giá dầu thô “tăng nóng” khi Mỹ đe doạ tấn công Iran

30 Tháng 01, 2026

Giá xăng dầu hôm nay ngày 30/1, thị trường giao dịch dầu thô thế giới bật tăng dữ dội trước diễn biến căng thẳng giữa...

Bộ GDĐT lý giải về đề xuất giới hạn nguyện vọng và phương thức xét tuyển 2026

Bộ GDĐT lý giải về đề xuất giới hạn nguyện vọng và phương thức xét tuyển 2026

30 Tháng 01, 2026

Trước những điều chỉnh đáng chú ý trong dự thảo Quy chế tuyển sinh đại học năm 2026, đại diện Bộ Giáo dục và Đào...

Tiết lộ bất ngờ về số lượng tài sản của Ngân hàng Trung ương Nga bị phong tỏa tại EU

Tiết lộ bất ngờ về số lượng tài sản của Ngân hàng Trung ương Nga bị phong tỏa tại EU

30 Tháng 01, 2026

Một lượng lớn tài sản của Ngân hàng Trung ương Nga đang bị đóng băng tại Liên minh châu Âu, trong khi tổng tài sản...

Đường dây cá độ bóng đá xuyên mạng Internet, giao dịch 50 tỷ đồng bị đánh sập

Đường dây cá độ bóng đá xuyên mạng Internet, giao dịch 50 tỷ đồng bị đánh sập

30 Tháng 01, 2026

Một đường dây cá độ bóng đá xuyên mạng Internet với tổng số tiền giao dịch khoảng 50 tỷ đồng vừa bị Công an TP...

Không chủ quan với virus Nipah

Không chủ quan với virus Nipah

29 Tháng 01, 2026

Kết quả các nghiên cứu chuyên sâu cho thấy, tại TPHCM và khu vực phía Nam đến nay chưa ghi nhận sự hiện diện của...

Cú lột xác

Cú lột xác "ngoạn mục’’ của Quả Dưa Hấu sau 3 thập kỷ

29 Tháng 01, 2026

Sau gần ba thập kỷ kể từ khi rời khỏi sân khấu chung, Quả Dưa Hấu ban nhạc từng được biết đến như “dấu...

Đối tượng đột nhập nhà dân trộm 4 con chồn ở Tây Ninh bị bắt

Đối tượng đột nhập nhà dân trộm 4 con chồn ở Tây Ninh bị bắt

29 Tháng 01, 2026

Đối tượng Lê Văn Chiến (37 tuổi, ngụ xã Tân Hưng, Tây Ninh) đột nhập vào nhà dân trộm 4 con chồn trên đường tẩu...

Triệu Vy gặp sự cố bất ngờ trên đường trở lại showbiz

Triệu Vy gặp sự cố bất ngờ trên đường trở lại showbiz

29 Tháng 01, 2026

Triệu Vy vừa có động thái tái xuất trên sóng trực tiếp nhưng lập tức gặp sự cố bất ngờ. Con đường trở lại làng...

1.23237 sec| 2324.164 kb